## Ontario Mathematics

## EP Curriculum Map

Note: the curriculum expectations of Strand A are covered throughout the lessons in strands B through F for Grades 3-9.

## Grade 9 Mathematics, De-streamed (MTH1W)

## B. Number

## B1. Development of Numbers and Number Sets

## Development and Use of Numbers

| Specific Expectations | Lesson Title |
| :--- | :--- |
| B1.1. research a number concept to tell a story about its development and use <br> in a specific culture, and describe its relevance in a current context | Number Concept Story |

## Number Sets

| Specific Expectations | Lesson Title |
| :--- | :--- |
| B1.2. describe how various subsets of a number system are defined, and <br> describe similarities and differences between these subsets | Number System Subsets |
| B1.3. use patterns and number relationships to explain density, infinity, and <br> limit as they relate to number sets | Density, Infinity and Limit |

## B2. Powers

## Powers

## Specific Expectations

B2.1. analyse, through the use of patterning, the relationship between the sign and size of an exponent and the value of a power, and use this relationship to express numbers in scientific notation and evaluate powers

B2.2. analyse, through the use of patterning, the relationships between the exponents of powers and the operations with powers, and use these relationships to simplify numeric and algebraic expressions

## Lesson Title

Powers and Scientific Notation

Operations with Power Power Rules

## B3. Number Sense and Operations

## Rational Numbers

| Specific Expectations | Lesson Title |
| :--- | :--- |
| B3.1. apply an understanding of integers to describe location, direction, <br> amount, and changes in any of these, in various contexts | Location, Direction, and Amount |
| B3.2. apply an understanding of unit fractions and their relationship to other <br> fractional amounts, in various contexts, including the use of measuring tools | Unit Fractions |
| B3.3. apply an understanding of integers to explain the effects that positive <br> and negative signs have on the values of ratios, rates, fractions, and decimals, <br> in various contexts | Positive and Negative Signs |

## Applications

| Specific Expectations | Lesson Title |
| :--- | :--- |
| B3.4. solve problems involving operations with positive and negative fractions <br> and mixed numbers, including problems involving formulas, measurements, <br> and linear relations, using technology when appropriate | Operations with Fractions and |
| B3.5. pose and solve problems involving rates, percentages, and proportions <br> in various contexts, including contexts connected to real-life applications of <br> data, measurement, geometry, linear relations, and financial literacy | Rates, Percents and Proportions |

## C. Algebra

## C1. Algebraic Expressions and Equations

## Development and Use of Algebra

| Specific Expectations | Lesson Title |
| :--- | :--- |
| C1.1. research an algebraic concept to tell a story about its development and <br> use in a specific culture, and describe its relevance in a current context | Algebra Concept Story |

## ep <br> Education Perfect

## Algebraic Expressions and Equations

| Specific Expectations | Lesson Title |
| :--- | :--- |
| C1.2. create algebraic expressions to generalize relationships expressed in <br> words, numbers, and visual representations, in various contexts | Algebraic Expressions |
| C1.3. compare algebraic expressions using concrete, numerical, graphical, and <br> algebraic methods to identify those that are equivalent, and justify their <br> choices | Equivalent Algebraic Expressions |
| C1.4. simplify algebraic expressions by applying properties of operations of <br> numbers, using various representations and tools, in different contexts | Simplifying Algebraic Expressions |
| C1.5. create and solve equations for various contexts, and verify their solution | Create and Solve Equations |

## C2. Coding

## Coding

| Specific Expectations | Lesson Title |
| :--- | :--- |
| C2.1. use coding to demonstrate an understanding of algebraic concepts <br> including variables, parameters, equations, and inequalities | Coding and Algebraic Concepts |
| C2.2. create code by decomposing situations into computational steps in <br> order to represent mathematical concepts and relationships, and to solve <br> problems | Create Coding Using <br> C2.3. read code to predict its outcome, and alter code to adjust constraints, Steps <br> parameters, and outcomes to represent a similar or new mathematical <br> situation |

## C3. Application of Relations

## Application of Linear and Non-Linear Relations

| Specific Expectations | Lesson Title |
| :--- | :--- |
| C3.1. compare the shapes of graphs of linear and non-linear relations to <br> describe their rates of change, to make connections to growing and shrinking <br> patterns, and to make predictions | Linear and Non-Linear Relations |
| C3.2. represent linear relations using concrete materials, tables of values, <br> graphs, and equations, and make connections between the various <br> representations to demonstrate an understanding of rates of change and <br> initial values | Representations of Linear Relations |
| C3.3. compare two linear relations of the form $y=a x+b$ graphically and <br> algebraically, and interpret the meaning of their point of intersection in terms <br> of a given context | Comparing Linear Relations |

## C4. Characteristics of Relations

## Characteristics of Linear and Non-Linear Relations

| Specific Expectations | Lesson Title |
| :--- | :--- |
| C4.1. compare characteristics of graphs, tables of values, and equations of <br> linear and non-linear relations | Characteristics of Linear and <br> C4.2. graph relations represented as algebraic equations of the forms $x=k, y$ <br> $=k, x+y=k, x-y=k, a x+b y=k$, and $x y=k$, and their associated inequalities, <br> where $a, b$, and $k$ are constants, to identify various characteristics and the <br> points and/or regions defined by these equations and inequalities <br> C4.3. translate, reflect, and rotate lines defined by $y=a x$, where $a$ is a <br> constant, and describe how each transformation affects the graphs and <br> equations of the defined lines <br> C4.4. determine the equations of lines from graphs, tables of values, and <br> concrete representations of linear relations by making connections between <br> rates of change and slopes, and between initial values and $y$-intercepts, and <br> use these equations to solve problems |

## D. Data

## D1. Collection, Representation, and Analysis of Data

## Application of Data

| Specific Expectations | Lesson Title |
| :--- | :--- |
| D1.1. identify a current context involving a large amount of data, and describe <br> potential implications and consequences of its collection, storage, <br> representation, and use | Large Data |

Representation and Analysis of Data

| Specific Expectations | Lesson Title |
| :--- | :--- |
| D1.2. represent and statistically analyse data from a real-life situation <br> involving a single variable in various ways, including the use of quartile values <br> and box plots | Values \& Box Plots |
| D1.3. create a scatter plot to represent the relationship between two variables, <br> determine the correlation between these variables by testing different <br> regression models using technology, and use a model to make predictions <br> when appropriate |  |

## D2. Mathematical Modelling

## Application of Mathematical Modelling

| Specific Expectations | Lesson Title |
| :--- | :--- |
| D2.1. describe the value of mathematical modelling and how it is used in real <br> life to inform decisions | Mathematical Modelling |

## Process of Mathematical Modelling

| Specific Expectations | Lesson Title |
| :--- | :--- |
| D2.2. identify a question of interest requiring the collection and analysis of <br> data, and identify the information needed to answer the question | Mathematical Modelling: Question <br> D2.3. create a plan to collect the necessary data on the question of interest <br> from an appropriate source, identify assumptions, identify what may vary and <br> what may remain the same in the situation, and then carry out the plan <br> D2.4. determine ways to display and analyse the data in order to create a <br> mathematical model to answer the original question of interest, taking into <br> account the nature of the data, the context, and the assumptions made <br> Data <br> D2.5. report how the model can be used to answer the question of interest, <br> how well the model fits the context, potential limitations of the model, and <br> what predictions can be made based on the modelMathematical Modelling: Report |

## E. Geometry and Measurement

## E1. Geometric and Measurement Relationships

## Geometric and Measurement Relationships

| Specific Expectations | Lesson Title |
| :--- | :--- |
| E1.1. research a geometric concept or a measurement system to tell a story <br> about its development and use in a specific culture or community, and <br> describe its relevance in connection to careers and to other disciplines | Geometric Concept \& Measurement |
| E1.2. create and analyse designs involving geometric relationships and circle <br> and triangle properties, using various tools | Circle and Triangle Properties |
| E1.3. solve problems involving different units within a measurement system <br> and between measurement systems, including those from various cultures or <br> communities, using various representations and technology, when <br> appropriate | Measurement Systems |
| E1.4. show how changing one or more dimensions of a two-dimensional shape <br> and a three-dimensional object affects perimeter/circumference, area, <br> surface area, and volume, using technology when appropriate | Changing Dimensions |

## ep <br> Education Perfect

| E1.5. solve problems involving the side-length relationship for right triangles <br> in real-life situations, including problems that involve composite shapes | Right Triangles |
| :--- | :--- |
| E1.6. solve problems using the relationships between the volume of prisms <br> and pyramids and between the volume of cylinders and cones, involving <br> various units of measure | Comparing Prisms \& Pyramids, and |

## F. Financial Literacy

## F1. Financial Decisions

## Financial Decisions

| Specific Expectations | Lesson Title |
| :--- | :--- |
| F1.1. identify a past or current financial situation and explain how it can inform <br> financial decisions, by applying an understanding of the context of the <br> situation and related mathematical knowledge | Financial Situations and Decisions |
| F1.2. identify financial situations that involve appreciation and depreciation, <br> and use associated graphs to answer related questions | Appreciation and Depreciation |
| F1.3. compare the effects that different interest rates, lengths of borrowing <br> time, ways in which interest is calculated, and amounts of down payments <br> have on the overall costs associated with purchasing goods or services, using <br> appropriate tools | Comparing Interest and Changing |
| F1.4. modify budgets displayed in various ways to reflect specific changes in |  |
| circumstances, and provide a rationale for the modifications | Budgets |

## Grade 10 Principles of Mathematics, Academic (MPM2D)

## Quadratic Relations of the Form $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b x}+\boldsymbol{c}$

## Investigating the Basic Properties of Quadratic Relations

| Specific Expectations | Lesson Title |
| :--- | :--- |
| A1.1. collect data that can be represented as a quadratic relation, from <br> experiments using appropriate equipment and technology (e.g., concrete <br> materials, scientific probes, graphing calculators), or from secondary sources <br> (e.g., the Internet, Statistics Canada); graph the data and draw a curve of best <br> fit, if appropriate, with or without the use of technology | Quadratic Relations: Collecting <br> Data |
| A1.2. determine, through investigation with and without the use of <br> technology, that a quadratic relation of the form $y=a x^{2}+b x+c(a \neq 0)$ can be be <br> graphically represented as a parabola, and that the table of values yields a <br> constant second difference | Quadratic Relations: Graphs and |
| A1.3. identify the key features of a graph of a parabola (i.e., the equation of the <br> axis of symmetry, the coordinates of the vertex, the $y$-intercept, the zeros, <br> and the maximum or minimum value), and use the appropriate terminology to <br> describe them |  |
| A1.4. compare, through investigation using technology, the features of the <br> graph of $y=x^{2}$ and the graph of $y=2^{x}$, and deatermine the meaning of a <br> negative exponent and of zero as an exponent (e.g., by examining patterns in <br> a table of values for $y=2^{x}$; by applying the exponent rules for multiplication <br> and division) | Comparing Graphs: Negative and |

## Relating the Graph of $\boldsymbol{y}=\boldsymbol{x}^{\mathbf{2}}$ and Its Transformations

## Specific Expectations

A2.1. identify, through investigation using technology, the effect on the graph of $y=x^{2}$ of transformations (i.e., translations, reflections in the $x$-axis, vertical stretches or compressions) by considering separately each parameter $a, h$, and $k$ [i.e., investigate the effect on the graph of $y=x^{2}$ of $a, h$, and $k$ in $y=x^{2}+$ $k, y=(x-h)^{2}$, and $y=a x^{2}$ ]
A2.2. explain the roles of $a, h$, and $k$ in $y=a(x-h)^{2}+k$, using the appropriate terminology to describe the transformations, and identify the vertex and the equation of the axis of symmetry

## Lesson Title

Describing Transformations of Quadratic Relations

Transformations of Quadratic Relations

## ep <br> Education Perfect

| A2.3. sketch, by hand, the graph of $y=a(x-h)^{2}+k$ by applying <br> transformations to the graph of $y=x^{2}$ | Graphing Transformed Quadratic <br> Relations |
| :--- | :--- |
| A2.4. determine the equation, in the form $y=a(x-h)^{2}+k$, of a given graph of <br> a parabola | Determining an Equation of a <br> Quadratic Relation |

## Solving Quadratic Equations

| Specific Expectations | Lesson Title |
| :---: | :---: |
| A3.1. expand and simplify second-degree polynomial expressions [e.g., ( $2 x+$ $\left.5)^{2},(2 x-y)(x+3 y)\right]$, using a variety of tools (e.g., algebra tiles, diagrams, computer algebra systems, paper and pencil) and strategies (e.g., patterning) | Expand and Simplify Polynomial Expressions |
| A3.2. factor polynomial expressions involving common factors, trinomials, and differences of squares [e.g., $2 x^{2}+4 x, 2 x-2 y+a x-a y, x^{2}-x-6,2 a^{2}+11 a+5$, $4 x^{2}-25$ ], using a variety of tools (e.g., concrete materials, computer algebra systems, paper and pencil) and strategies (e.g., patterning) | Factoring Polynomial Expressions |
| A3.3. determine, through investigation, and describe the connection between the factors of a quadratic expression and the $x$-intercepts (i.e., the zeros) of the graph of the corresponding quadratic relation, expressed in the form $y=$ $a(x-r)(x-s)$ | Factors of Polynomial Expressions |
| A3.4. interpret real and non-real roots of quadratic equations, through investigation using graphing technology, and relate the roots to the $x$-intercepts of the corresponding relations | Roots of Quadratic Equations |
| A3.5. express $y=a x^{2}+b x+c$ in the form $y=a(x-h)^{2}+k$ by completing the square in situations involving no fractions, using a variety of tools (e.g. concrete materials, diagrams, paper and pencil); | Completing the Square: Standard Form to Vertex Form |
| A3.6. sketch or graph a quadratic relation whose equation is given in the form $y=a x^{2}+b x+c$, using a variety of methods (e.g., sketching $y=x^{2}-2 x-8$ using intercepts and symmetry; sketching $y=3 x^{2}-12 x+1$ by completing the square and applying transformations; graphing $h=-4.9 t^{2}+50 t+1.5$ using technology) | Graphing Quadratic Relations in Standard Form |
| A3.7. explore the algebraic development of the quadratic formula (e.g., given the algebraic development, connect the steps to a numerical example; follow a demonstration of the algebraic development) | The Quadratic Formula |
| A3.8. solve quadratic equations that have real roots, using a variety of methods (i.e., factoring, using the quadratic formula, graphing) | Solving Quadratic Equations |

## Solving Problems Involving Quadratic Relations

## Specific Expectations

A4.1. determine the zeros and the maximum or minimum value of a quadratic relation from its graph (i.e., using graphing calculators or graphing software) or from its defining equation (i.e., by applying algebraic techniques)
A4.2. solve problems arising from a realistic situation represented by a graph or an equation of a quadratic relation, with and without the use of technology (e.g., given the graph or the equation of a quadratic relation representing the height of a ball over elapsed time, answer questions such as the following: What is the maximum height of the ball? After what length of time will the ball hit the ground? Over what time interval is the height of the ball greater than 3 m ?)

## Lesson Title

Determining Zeros and
Maximum/Minimum Values

Solving Problems Involving Quadratic Relations

## Analytic Geometry

## Using Linear Systems to Solve Problems

| Specific Expectations | Lesson Title |
| :---: | :---: |
| B1.1. solve systems of two linear equations involving two variables, using the algebraic method of substitution or elimination | Solving Systems of Equations Algebraically |
| B1.2. solve problems that arise from realistic situations described in words or represented by linear systems of two equations involving two variables, by choosing an appropriate algebraic or graphical method | Solving Systems of Equations Algebraically and Graphically |
| B1.3 identify the relationship between the slopes of parallel and perpendicular lines, and use this relationship to solve related problems | Parallel and Perpendicular Lines |
| B1.4 develop the formula for the slope of a line (i.e. $m=(y 2-y 1) /(x 2-x 1))$, and use this formula to determine the equations of lines, given information about the lines (e.g., a graph of a line, a table of values, the coordinates of two points) | Slope of a Line Formula |
| B1.5 represent the equations of lines in different forms (e.g., $y=m x+b, A x+$ $B y+C=0, A x+B y=D)$ and translate between these forms, as appropriate for the context | Equations of Lines |

## Solving Problems Involving Properties of Line Segments

| Specific Expectations | Lesson Title |
| :--- | :--- |
| B2.1. develop the formula for the midpoint of a line segment, and use this <br> formula to solve problems (e.g., determine the coordinates of the midpoints of <br> the sides of a triangle, given the coordinates of the vertices, and verify <br> concretely or by using dynamic geometry software) | Midpoint of a Line Segment |
| B2.2. develop the formula for the length of a line segment, and use this <br> formula to solve problems (e.g., determine the lengths of the line segments <br> joining the midpoints of the sides of a triangle, given the coordinates of the <br> vertices of the triangle, and verify using dynamic geometry software) | Length of a Line Segment |
| B2.3. develop the equation for a circle with centre ( 0,0 ) and radius $r$, by <br> applying the formula for the length of a line segment | Equation of a Circle and Length of |
| B2.4. determine the radius of a circle with centre $(0,0)$, given its equation; <br> write the equation of a circle with centre ( 0,0$)$, given the radius; and sketch <br> the circle, given the equation in the form $x^{2}+y^{2}=r^{2}$ | Circles |
| B2.5. solve problems involving the slope, length, and midpoint of a line <br> segment (e.g., determine the equation of the right bisector of a line segment, <br> given the coordinates of the endpoints; determine the distance from a given <br> point to a line whose equation is given, and verify using dynamic geometry <br> software) | Solve Problems Involving Slope, |

## Using Analytic Geometry to Verify Geometric Properties

| Specific Expectations | Lesson Title |
| :---: | :---: |
| B3.1. determine, through investigation (e.g., using dynamic geometry software, by paper folding), some characteristics and properties of geometric figures (e.g., medians in a triangle, similar figures constructed on the sides of a right triangle) | Investigating Characteristics and Properties of Geometric Figures |
| B3.2. verify, using algebraic techniques and analytic geometry, some characteristics of geometric figures (e.g., verify that two lines are perpendicular, given the coordinates of two points on each line; verify, by determining side length, that a triangle is equilateral, given the coordinates of the vertices) | Verifying Characteristics and Properties of Geometric Figures |
| B3.4. plan and implement a multi-step strategy that uses analytic geometry and algebraic techniques to verify a geometric property (e.g., given the coordinates of the vertices of a triangle, verify that the line segment joining the midpoints of two sides of the triangle is parallel to the third side and half its length, and check using dynamic geometry software; given the coordinates of the vertices of a rectangle, verify that the diagonals of the rectangle bisect each other) | Verifying Complex Geometric Properties |

## Trigonometry

## Investigating Similarity and Solving Problems Involving Similar Triangles

| Specific Expectations | Lesson Title |
| :--- | :--- |
| C1.1. verify, through investigation (e.g., using dynamic geometry software, <br> concrete materials), the properties of similar triangles (e.g., given similar <br> triangles, verify the equality of corresponding angles and the proportionality <br> of corresponding sides) | Similar Triangles |
| C1.2. describe and compare the concepts of similarity and congruence | Similarity and Congruence |
| C1.3. solve problems involving similar triangles in realistic situations (e.g., <br> shadows, reflections, scale models, surveying) | Solving Problems with Similar |

## Solving Problems Involving the Trigonometry of Right Triangles

| Specific Expectations | Lesson Title |
| :--- | :--- |
| C2.1. determine, through investigation (e.g., using dynamic geometry <br> software, concrete materials), the relationship between the ratio of two sides <br> in a right triangle and the ratio of the two corresponding sides in a similar <br> right triangle, and define the sine, cosine, and tangent ratios (e.g., sin A <br> opposite/hypotenuse) | Investigating Right Triangles |
| C2.2. determine the measures of the sides and angles in right triangles, using <br> the primary trigonometric ratios and the Pythagorean theorem; | Solving Right Triangles |
| C2.3. solve problems involving the measures of sides and angles in right <br> triangles in real life applications (e.g., in surveying, in navigating, in <br> determining the height of an inaccessible object around the school), using the <br> primary trigonometric ratios and the Pythagorean theorem |  |

## ep Education Perfect

## Solving Problems Involving the Trigonometry of Acute Triangles

| Specific Expectations | Lesson Title |
| :--- | :--- |
| C3.1. explore the development of the sine law within acute triangles (e.g., use <br> dynamic geometry software to determine that the ratio of the side lengths <br> equals the ratio of the sines of the opposite angles; follow the algebraic <br> development of the sine law and identify the application of solving systems of <br> equations) | Sine Law |
| C3.2. explore the development of the cosine law within acute triangles (e.g., <br> use dynamic geometry software to verify the cosine law; follow the algebraic <br> development of the cosine law and identify its relationship to the <br> Pythagorean theorem and the cosine ratio) | Cosine Law <br> C3.3. determine the measures of sides and angles in acute triangles, using the <br> sine law and the cosine law <br> C3.4. solve problems involving the measures of sides and angles in acute <br> triangles |

## Grade 10 Foundations of Mathematics, Applied (MFM2P)

## Measurement and Trigonometry

## Solving Problems Involving Similar Triangles

| Specific Expectations | Lesson Title |
| :--- | :--- |
| A1.1. verify, through investigation (e.g., using dynamic geometry software, <br> concrete materials), properties of similar triangles (e.g., given similar triangles, <br> verify the equality of corresponding angles and the proportionality of <br> corresponding sides) | Investigating Properties of Similar |
| A1.2. determine the lengths of sides of similar triangles, using proportional <br> reasoning; | Similar Triangles: Side Lengths |
| A1.3. solve problems involving similar triangles in realistic situations (e.g., <br> shadows, reflections, scale models, surveying) | Solve Problems with Similar |

## Solving Problems Involving the Trigonometry of Right Triangles

| Specific Expectations | Lesson Title |
| :--- | :--- |
| A2.1. determine, through investigation (e.g., using dynamic geometry <br> software, concrete materials), the relationship between the ratio of two sides <br> in a right triangle and the ratio of the two corresponding sides in a similar <br> right triangle, and define the sine, cosine, and tangent ratios (e.g., sin A $=$ <br> opposite/hypotenuse) | Investigating Right Triangles |
| A2.2. determine the measures of the sides and angles in right triangles, using <br> the primary opposite hypotenuse trigonometric ratios and the Pythagorean <br> theorem; | Solving Right Triangles |
| A2.3. solve problems involving the measures of sides and angles in right <br> triangles in real life applications (e.g., in surveying, in navigation, in <br> determining the height of an inaccessible object around the school), using the <br> primary trigonometric ratios and the Pythagorean theorem |  |
| A2.4. describe, through participation in an activity, the application of <br> trigonometry in an occupation (e.g., research and report on how trigonometry <br> is applied in astronomy; attend a career fair that includes a surveyor, and <br> describe how a surveyor applies trigonometry to calculate distances; job <br> shadow a carpenter for a few hours, and describe how a carpenter uses <br> trigonometry). |  |

## Solving Problems Involving Surface Area and Volume, Using the Imperial and Metric Systems of Measurement

| Specific Expectations | Lesson Title |
| :--- | :--- |
| A3.1. use the imperial system when solving measurement problems (e.g., <br> problems involving dimensions of lumber, areas of carpets, and volumes of <br> soil or concrete) | Measurement <br> A3.2. perform everyday conversions between the imperial system and the <br> metric system (e.g., millilitres to cups, centimetres to inches) and within these <br> systems (e.g., cubic metres to cubic centimetres, square feet to square yards), <br> as necessary to solve problems involving measurement <br> A3.3. determine, through investigation, the relationship for calculating the <br> surface area of a pyramid (e.g., use the net of a square based pyramid to <br> determine that the surface area is the area of the square base plus the areas <br> of the four congruent triangles) <br> A3.4. solve problems involving the surface areas of prisms, pyramids, and <br> cylinders, and the volumes of prisms, pyramids, cylinders, cones, and spheres, <br> including problems involving combinations of these figures, using the metric <br> system or the imperial system, as appropriate <br> A3.5 develop the formula for the volume of a sphere, using concrete materials <br> and the volume relationships between cylinders, cones, and spheres |

## Modelling Linear Relations

## Manipulating and Solving Algebraic Equations

| Specific Expectations | Lesson Title |
| :--- | :--- |
| B1.1. solve first-degree equations involving one variable, including equations <br> with fractional coefficients (e.g. using the balance analogy, computer algebra <br> systems, paper and pencil) | Solving First-Degree Equations: |
| B1.2. determine the value of a variable in the first degree, using a formula (i.e., <br> by isolating the variable and then substituting known values; by substituting <br> known values and then solving for the variable) (e.g., in analytic geometry, in <br> measurement) | Solving First-Degree Equations: <br> B1.3. express the equation the Variable <br> $B y+C=0$. |

## Graphing and Writing Equations of Lines

| Specific Expectations | Lesson Title |
| :--- | :--- |
| B2.1. connect the rate of change of a linear relation to the slope of the line, <br> and define the slope as the ratio $m=$ rise/run | Rate of Change and Slope of a Line |
| B2.2. identify, through investigation, $y=m x+b$ as a common form for the <br> equation of a straight line, and identify the special cases $x=a, y=b$ | Investigating $y=m x+b$ |
| B2.3. identify, through investigation with technology, the geometric <br> significance of $m$ and $b$ in the equation $y=m x+b$ | Slope and $y$-Intercept of a Line |
| B2.4. identify, through investigation, properties of the slopes of lines and line <br> segments (e.g., direction, positive or negative rate of change, steepness, <br> parallelism), using graphing technology to facilitate investigations, where <br> appropriate | Properties of the Slope of a Line |
| B2.5. graph lines by hand, using a variety of techniques (e.g., graph $y=2 / 3$ <br> $x-4$ using the $y$-intercept and slope; graph $2 x+3 y=6$ using the $x$ - and <br> $y$-intercepts) | Graphing Lines |
| B2.6 determine the equation of a line, given its graph, the slope and <br> $y$-intercept, the slope and a point on the line, or two points on the line | Determine the Equation of a Line |

## Solving and Interpreting Systems of Linear Equations

| Specific Expectations | Lesson Title |
| :--- | :--- |
| B3.1. determine graphically the point of intersection of two linear relations <br> (e.g., using graph paper, using technology) | Point of Intersection |
| B3.2. solve systems of two linear equations involving two variables with <br> integral coefficients, using the algebraic method of substitution or elimination | Solving Systems of Equations |
| B3.3. solve problems that arise from realistic situations described in words or <br> represented by given linear systems of two equations involving two variables, <br> by choosing an appropriate algebraic or graphical method | Applications of Solving Systems of |

## Quadratic Relations of the Form $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b x}+\boldsymbol{c}$

## Manipulating Quadratic Expressions

| Specific Expectations | Lesson Title |
| :--- | :--- |
| C1.1. expand and simplify second-degree polynomial expressions involving <br> one variable that consist of the product of two binomials $[e . g .,(2 x+3)(x+4)]$ <br> or the square of a binomial [e.g., $\left.(x+3)^{2}\right]$, using a variety of tools (e.g., algebra <br> tiles, diagrams, computer algebra systems, paper and pencil) and strategies <br> (e.g. patterning) | Expand and Simplify Polynomial <br> C1.2. factor binomials (e.g., $\left.4 x^{2}+8 x\right)$ and trinomials (e.g., $\left.3 x^{2}+9 x-15\right)$ <br> involving one variable up to degree two, by determining a common factor <br> using a variety of tools (e.g., algebra tiles, computer algebra systems, paper <br> and pencil) and strategies (e.g., patterning) <br> C1.3. factor simple trinomials of the form $x^{2}+b x+c\left(e . g ., x^{2}+7 x+10, x^{2}+2 x-2\right.$ <br> 8), using a variety of tools (e.g., algebra tiles, computer algebra systems, <br> paper and pencil) and strategies (e.g., patterning) <br> Cactoring Simple Trinomials <br> C1.4. factor the difference of squares of the form $x^{2}-a^{2}\left(e . g ., x^{2}-16\right)$ |

## Identifying Characteristics of Quadratic Relations

| Specific Expectations | Lesson Title |
| :--- | :--- |
| C2.1. collect data that can be represented as a quadratic relation, from <br> experiments using appropriate equipment and technology (e.g., concrete <br> materials, scientific probes, graphing calculators), or from secondary sources <br> (e.g., the Internet, Statistics Canada); graph the data and draw a curve of best <br> fit, if appropriate, with or without the use of technology | Quadratic Relations: Collecting |
| C2.2. determine, through investigation using technology, that a quadratic <br> relation of the form $y=a x^{2}+b x+c(a \neq 0)$ can be graphically represented as a <br> parabola, and determine that the table of values yields a constant second <br> difference | Tables of Values <br> C2.3. identify the key features of a graph of a parabola (i.e., the equation of <br> the axis of symmetry, the coordinates of the vertex, the $y$-intercept, the <br> zeros, and the maximum or minimum value), using a given graph or a graph <br> generated with technology from its equation, and use the appropriate <br> terminology to describe the features |
| C2.4. compare, through investigation using technology, the graphical <br> representations of a quadratic relation in the form $y=x^{2}+b x+c$ and the <br> same relation in the factored form $y=(x-r)(x-s)(i . e .$, the graphs are the <br> same), and describe the connections between each algebraic representation <br> and the graph [e.g., the $y$-intercept is $c$ in the form $y=x^{2}+b x+c ;$ the <br> $x$-intercepts are $r$ and $s$ in the form $y=(x-r)(x-s)]$ |  |

## ep Education Perfect

## Solving Problems by Interpreting Graphs of Quadratic Relations

| Specific Expectations | Lesson Title |
| :--- | :--- |
| C3.1. solve problems involving a quadratic relation by interpreting a given <br> graph or a graph generated with technology from its equation (e.g., given an <br> equation representing the height of a ball over elapsed time, use a graphing <br> calculator or graphing software to graph the relation, and answer questions <br> such as the following:What is the maximum height of the ball? After what <br> length of time will the ball hit the ground? Over what time interval is the <br> height of the ball greater than 3 m?) | Quadratic Relations: Interpreting |
| C3.2. solve problems by interpreting the significance of the key features of <br> graphs obtained by collecting experimental data involving quadratic relations | Solving Problems Involving |

