

Cambridge A-level Mathematics (9709)

EP Curriculum Map

Pure Mathematics 1 (for Paper 1)

1.1 Quadratics

Candidates should be able to:	Lessons
 carry out the process of completing the square for a quadratic polynomial ax² + bx + c and use a completed square form 	 <u>Completing the Square</u> <u>The Quadratic Formula</u> <u>Introduction to the Discriminant</u>
 find the discriminant of a quadratic polynomial ax² + bx + c and use the discriminant 	Using the Discriminant to find <u>Coefficients</u>
 solve quadratic equations, and quadratic inequalities, in one unknown 	 <u>Nature of Roots</u> <u>Solving Non-Monic Quadratic</u> Equations
 solve by substitution a pair of simultaneous equations of which one is linear and one is quadratic 	 <u>Solving Quadratic Equations:</u> <u>The Quadratic Formula</u>
 recognise and solve equations in x which are quadratic in some function of x. 	 <u>The Quadratic Formula</u> <u>The Quadratic Formula</u> <u>Solving Quadratic Inequalities</u> <u>Solving Non-Linear</u> <u>Simultaneous Equations</u> <u>Introduction to Non-Linear</u> <u>Simultaneous Equations</u>

1.2 Functions

Candidates should be able to:	Lessons
• understand the terms function, domain, range, one-one function, inverse function and composition of functions	 <u>Function Notation</u> <u>Inverse Functions</u>
• identify the range of a given function in simple cases, and find the composition of two given functions	 <u>Composite Functions</u> <u>Find the Range of a Function</u> <u>Inverse Functions and</u> <u>Transformations</u>
• determine whether or not a given function is one-one, and find the inverse of a one-one function in simple cases	
• illustrate in graphical terms the relation between a one-one function and its inverse	
 understand and use the transformations of the graph of y = f(x) given by y = f(x) + a, y = f(x + a), y = af(x), y = f(ax) and simple combinations of these. 	

1.3 Coordinate geometry

Candidates should be able to:	Lessons
 find the equation of a straight line given sufficient information 	• <u>Circle Graphs</u>
 interpret and use any of the forms y = mx + c, y - y1 = m(x - x1), ax + by + c = 0 in solving problems 	
 understand that the equation (x - a)² + (y - b)² = r² represents the circle with centre (a, b) and radius r 	
 use algebraic methods to solve problems involving lines and circles 	
• understand the relationship between a graph and its associated algebraic equation, and use the relationship between points of intersection of graphs and solutions of equations.	

1.4 Circular measure

Candidates should be able to:	Lessons
 understand the definition of a radian, and use the relationship between radians and degrees 	 <u>The Unit Circle and Radians</u> <u>Finding an Arc Length</u> <u>Area of Sectors and Segments</u>
• use the formulae $s = r\theta$ and $A = 1/2r^2\theta$ in solving problems concerning the arc length and sector area of a circle.	

1.5 Trigonometry

Candidates should be able to:	Lessons
 sketch and use graphs of the sine, cosine and tangent functions (for angles of any size, and using either degrees or radians) 	 <u>Understanding and Graphing Sine</u> <u>Understanding and Graphing</u> <u>Cosine</u>
 use the exact values of the sine, cosine and tangent of 30°, 45°, 60°, and related angles 	 Comparing Trigonometric Functions Sketching Transformed Trigonometric Graphs Special Triangles: 30-60-90 Special Triangles: 45-45-90 Finding Angles Using Trigonometry The Pythagorean Identity Solving equations involving trigonometric functions
 use the notations sin⁻¹x, cos⁻¹x, tan⁻¹ x to denote the principal values of the inverse trigonometric relations 	
• use the identities $\frac{\sin}{\cos} \equiv \tan \operatorname{and} \sin^2 \theta + \cos^2 \theta \equiv 1$	
 find all the solutions of simple trigonometrical equations lying in a specified interval (general forms of solution are not included) 	

1.6 Series

С	andidates should be able to:	Lessons
•	use the expansion of $(a + b)^n$, where <i>n</i> is a positive integer	Pascal's Triangle and n Choose r
•	recognise arithmetic and geometric progressions	 <u>Binomial Expansion</u> <u>Introduction to Arithmetic</u> <u>Sequences</u> <u>Summing Geometric Sequences</u> <u>Review: Arithmetic Sequences</u> <u>Summing Geometric Sequences</u> <u>Sums to Infinity</u>
•	use the formulae for the <i>n</i> th term and for the sum of the first <i>n</i> terms to solve problems involving arithmetic or geometric progressions	
•	use the condition for the convergence of a geometric progression, and the formula for the sum to infinity of a convergent geometric progression.	

1.7 Differentiation

Candidates should be able to:	Lessons
• understand the gradient of a curve at a point as the limit of the gradients of a suitable sequence of chords, and use the notations f'(x), f "(x), $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ for first and second derivatives	 Introduction to Derivatives Sketching the Gradient Function from the Original Function Understanding The Second Derivative Differentiating Polynomials The Chain Rule Review Lesson: Tangents and Normals Finding Stationary Points Sketching Graphs
 use the derivative of xⁿ (for any rational n), together with constant multiples, sums and differences of functions, and of composite functions using the chain rule 	
 apply differentiation to gradients, tangents and normals, increasing and decreasing functions and rates of change 	
 locate stationary points and determine their nature, and use information about stationary points in sketching graphs. 	

1.8 Integration

Candidates should be able to:	Lessons
 understand integration as the reverse process of differentiation, and integrate (ax + b)ⁿ (for any rational n except -1), together with constant multiples, sums and differences 	 Integrating Polynomials Anti-Differentiating Polynomials Equation of the Original Function
 solve problems involving the evaluation of a constant of integration 	
evaluate definite integrals	
 use definite integration to find: - the area of a region bounded by a curve and lines parallel to the axes, or between a curve and a line or between two curves - a volume of revolution about one of the axes. 	

2.1 Algebra

Candidates should be able to:	Lessons
• understand the meaning of $ x $, sketch the graph of $y = ax + b $ and use relations such as $ a = b \Leftrightarrow a^2 = b^2$ and $ x - a < b \Leftrightarrow a - b < x < a + b$ when solving equations and inequalities	 <u>Dividing Polynomials</u> <u>The Remainder Theorem</u> <u>The Factor Theorem</u> <u>Factorising Cubic Polynomials</u> <u>Factorising Quartic Polynomials</u> <u>Solving Polynomials</u>
 divide a polynomial, of degree not exceeding 4, by a linear or quadratic polynomial, and identify the quotient and remainder (which may be zero) 	
• use the factor theorem and the remainder theorem.	

2.2 Logarithmic and exponential functions

Candidates should be able to:	Lessons
• understand the relationship between logarithms and indices, and use the laws of logarithms (excluding change of base)	 <u>Deriving the Laws of</u> <u>Logarithms</u>
 understand the definition and properties of e^x and ln x, including their relationship as inverse functions and their graphs 	 Features of Logarithmic Graphs Exponential Graphs Defining the Exponential
 use logarithms to solve equations and inequalities in which the unknown appears in indices 	 <u>Function</u> <u>The Natural Logarithm and</u> Inverse Belations
 use logarithms to transform a given relationship to linear form, and hence determine unknown constants by considering the gradient and/or intercept 	 Solving Equations Involving Logarithmic Functions

2.3 Trigonometry

Candidates should be able to:	Lessons
• understand the relationship of the secant, cosecant and cotangent functions to cosine, sine and tangent, and use properties and graphs of all six trigonometric functions for angles of any magnitude	Not currently covered in the EP platform
 use trigonometrical identities for the simplification and exact evaluation of expressions, and in the course of solving equations, and select an identity or identities appropriate to the context, showing familiarity in particular with the use of - sec²θ ≡ 1 + tan²θ and cosec²θ ≡ 1 + cot²θ the expansions of sin(A ± B), cos(A ± B) and tan(A ± B) the formulae for sin 2A, cos 2A and tan 2A the expression of a sin θ + b cos θ in the forms	

2.4 Differentiation

Candidates should be able to:	Lessons
• use the derivatives of e^x , $\ln x$, $\sin x$, $\cos x$, $\tan x$, together	<u>Exponential Functions</u>
with constant multiples, sums, differences and composites	 <u>Natural Logarithms</u>
 differentiate products and quotients 	<u>Trigonometric Functions</u>
	<u>Mixed Differentiation Techniques</u>
 find and use the first derivative of a function which is defined 	<u>Differentiating Exponential</u>
parametrically or implicitly.	Functions
	<u>Differentiating the Natural</u>
	<u>Logarithm</u>
	• The Product and Quotient Rule
	<u>The Quotient Rule</u>
	<u>Combining Multiple Rules</u>
	Parametric Equations
	• Tangents and Normals of
	Parametric Curves
	Implicit Differentiation

2.5 Integration

Candidates should be able to:	Lessons
• extend the idea of 'reverse differentiation' to include the integration of e^{ix+b} $\frac{1}{2}$ $e^{ix}(x+b)$ end	 Integrating Exponential Functions Integrating Trigonometric
sec ² ($ax + b$)	<u>Functions</u>
• use trigonometrical relationships in carrying out integration	the Constant
 understand and use the trapezium rule to estimate the value of a definite integral. 	Integrating Products: Reverse Chain Rule
or a domine integrai	Integrating the Reciprocal Eurotion
	Integrating Quotients: Splitting
	 <u>Integrating Quotients: Factorising</u>
	 and Cancelling Definite Integrals: Eurther
	Questions
	Integrating Trigonometric <u>Functions</u>

2.6 Numerical solution of equations

Candidates should be able to:	Lessons
 locate approximately a root of an equation, by means of graphical considerations and/or searching for a sign change 	Not currently covered in the EP platform
• understand the idea of, and use the notation for, a sequence	

of approximations which converges to a root of an equation
• understand how a given simple iterative formula of the form $x_{n+1} = F(x_n)$ relates to the equation being solved, and use a given iteration, or an iteration based on a given rearrangement of an equation, to determine a root to a prescribed degree of accuracy.

Pure Mathematics 3 (for Paper 3)

3.1 Algebra

Candidates should be able to:	Lessons
• understand the meaning of $ x $, sketch the graph of $y = ax + b $ and use relations such as $ a = b \Leftrightarrow a^2 = b^2$ and $ x - a < b \Leftrightarrow a - b < x < a + b$ when solving equations and inequalities	 <u>Dividing Polynomials</u> <u>The Remainder Theorem</u> <u>The Factor Theorem</u> <u>Factorising Cubic Polynomials</u> <u>Factorising Quartic Polynomials</u> <u>Solving Polynomials</u>
 divide a polynomial, of degree not exceeding 4, by a linear or quadratic polynomial, and identify the quotient and remainder (which may be zero) 	
• use the factor theorem and the remainder theorem.	
 recall an appropriate form for expressing rational functions in partial fractions, and carry out the decomposition, in cases where the denominator is no more complicated than - (ax + b)(cx + d)(ex + f) - (ax + b)(cx + d)² - (ax + b)(cx² + d) 	
 use the expansion of (1 + x)ⁿ, where n is a rational number and x < 1. 	

3.2 Logarithmic and Exponential Functions

Candidates should be able to:	Lessons
• understand the relationship between logarithms and indices, and use the laws of logarithms (excluding change of base)	 Features of Logarithmic Graphs Exponential Graphs Defining the Exponential Function Solving Equations Involving Logarithmic Functions Using Logarithms to Solve Equations Involving Indices
 understand the definition and properties of e^x and ln x, including their relationship as inverse functions and their graphs 	
• use logarithms to solve equations and inequalities in which the unknown appears in indices	
• use logarithms to transform a given relationship to linear form, and hence determine unknown constants by considering the gradient and/or intercept	

3.3 Trigonometry

Candidates should be able to:	Lessons
• understand the relationship of the secant, cosecant and cotangent functions to cosine, sine and tangent, and use properties and graphs of all six trigonometric functions for angles of any magnitude	Not currently covered in the EP platform
 use trigonometrical identities for the simplification and exact evaluation of expressions, and in the course of solving equations, and select an identity or identities appropriate to the context, showing familiarity in particular with the use of - sec²θ ≡ 1 + tan²θ and cosec²θ ≡ 1 + cot²θ the expansions of sin(A ± B), cos(A ± B) and tan(A ± B) the formulae for sin 2A, cos 2A and tan 2A the expression of a sin θ + b cos θ in the forms	

3.4 Differentiation

Candidates should be able to:	Lessons
• use the derivatives of e ^x , ln x, sin x, cos x, tan x, together	<u>Exponential Functions</u>
with constant multiples, sums, differences and composites	 <u>Natural Logarithms</u>
 differentiate products and quotients 	 <u>Differentiation Techniques</u>
	 <u>Differentiating Exponentials</u>
find and use the first derivative of a function which is defined	 <u>The Natural Logarithm and Inverse</u>
parametrically or implicitly.	<u>Relations</u>
	<u>The Product and Quotient Rule</u>
	<u>The Quotient Rule</u>
	<u>Combining Multiple Rules</u>
	Parametric Equations
	• Tangents and Normals of
	Parametric Curves
	Implicit Differentiation

3.5 Integration

Candidates should be able to:	Lessons
 extend the idea of 'reverse differentiation' to include the integration of e^{ax+b}, ¹/_{ax+b}, sin(ax + b), cos(ax + b) and sec²(ax + b) 	 Integrating Exponential Functions Integrating Trigonometric Functions Trigonometric Functions: Finding
• use trigonometrical relationships in carrying out integration	the Constant
 integrate rational functions by means of decomposition into partial fractions 	Integrating Products: Reverse Chain Rule
• recognise an integrand of the form $\frac{kf'(x)}{f(x)}$ and integrate such	Integrating the Reciprocal Function

functions	Integrating Quotients: Splitting
 recognise when an integrand can usefully be regarded as a product, and use integration by parts 	 Fractions Integrating Quotients: Factorising and Cancelling Definite Integrals: Further Questions Integrating Trigonometric Functions Integrating Quotients: Generalised Logarithms Integration by Substitution
• use a given substitution to simplify and evaluate either a definite or an indefinite integral	

3.6 Numerical solution of equations

Candidates should be able to:	Lessons
 locate approximately a root of an equation, by means of graphical considerations and/or searching for a sign change 	Not currently covered in the EP platform
• understand the idea of, and use the notation for, a sequence of approximations which converges to a root of an equation	
• understand how a given simple iterative formula of the form $x_{n+1} = F(x_n)$ relates to the equation being solved, and use a given iteration, or an iteration based on a given rearrangement of an equation, to determine a root to a prescribed degree of accuracy.	

3.7 Vectors

Candidates should be able to:	Lessons
 use standard notations for vectors 	Not currently covered in the EP platform
 carry out addition and subtraction of vectors and multiplication of a vector by a scalar, and interpret these operations in geometrical terms 	
 calculate the magnitude of a vector, and use unit vectors, displacement vectors and position vectors 	
 understand the significance of all the symbols used when the equation of a straight line is expressed in the form r = a + tb, and find the equation of a line, given sufficient information 	
 determine whether two lines are parallel, intersect or are skew, and find the point of intersection of two lines when it exists 	
 use formulae to calculate the scalar product of two vectors, and use scalar products in problems involving lines and points. 	

3.8 Differential Equations

Candidates should be able to:	Lessons
• formulate a simple statement involving a rate of change as a differential equation	 <u>Introduction to Differential</u> <u>Equations</u>
• find by integration a general form of solution for a first order differential equation in which the variables are separable	 <u>Solving Differential Equations</u> <u>Introduction to Differential</u> Equations
• use an initial condition to find a particular solution	 <u>Separated Variables</u>
• interpret the solution of a differential equation in the context of a problem being modelled by the equation.	 <u>Calculating Particular Solutions</u> <u>Separated Variables: Particular</u> Solutions

3.9 Complex Numbers

Candidates should be able to:	Lessons
• understand the idea of a complex number, recall the meaning of the terms real part, imaginary part, modulus, argument, conjugate, and use the fact that two complex numbers are equal if and only if both real and imaginary parts are equal	 <u>Complex Numbers</u> <u>Complex Conjugates</u> <u>Rationalising the Denominator</u> <u>Multiplying and Dividing Complex</u>
 carry out operations of addition, subtraction, multiplication and division of two complex numbers expressed in Cartesian form x + iy 	 <u>Numbers</u> <u>Quadratic Equations with Complex</u> <u>Roots</u> <u>Cubic Equations with Complex</u> <u>Roots</u> <u>Loci</u>
 use the result that, for a polynomial equation with real coefficients, any non-real roots occur in conjugate pairs 	
 represent complex numbers geometrically by means of an Argand diagram 	
 carry out operations of multiplication and division of two complex numbers expressed in polar form r(cosθ + i sinθ)≡ re^{iθ} 	
 find the two square roots of a complex number 	
 understand in simple terms the geometrical effects of conjugating a complex number and of adding, subtracting, multiplying and dividing two complex numbers 	
• illustrate simple equations and inequalities involving complex numbers by means of loci in an Argand diagram	

Mechanics (for Paper 4)

4.1 Forces and equilibrium

Candidates should be able to:	Lessons
• identify the forces acting in a given situation	Introduction to Forces
 understand the vector nature of force, and find and use components and resultants 	 Forces in One Dimension Forces in Two Dimensions Inclined Planes with Applied Force Newton's Third Law
• use the principle that, when a particle is in equilibrium, the vector sum of the forces acting is zero, or equivalently, that the sum of the components in any direction is zero	
 understand that a contact force between two surfaces can be represented by two components, the normal component and the frictional component 	
 use the model of a 'smooth' contact, and understand the limitations of this model 	
 understand the concepts of limiting friction and limiting equilibrium, recall the definition of coefficient of friction, and use the relationship F = μR or F ≥ μR, as appropriate. 	
• use Newton's third law.	

4.2 Kinematics of motion in a straight line

Candidates should be able to:	Lessons
 understand the concepts of distance and speed as scalar quantities, and of displacement, velocity and acceleration as vector quantities 	 Motion, Speed and Velocity Acceleration Distance-Time Graphs
 sketch and interpret displacement-time graphs and velocity-time graphs, and in particular appreciate that: the area under a velocity-time graph represents displacement, the gradient of a displacement-time graph represents velocity, the gradient of a velocity-time graph represents acceleration 	 Distance-Time Graphs Displacement-Time Graphs Velocity-Time Graphs Acceleration-Time Graphs Summary of Motion Graphs Kinematic Equations Using the Acceleration Formula to Calculate Final Velocity Using the Acceleration Formula to Calculate Initial Velocity Using the Acceleration Formula to Calculate Initial Velocity Using the Acceleration Formula to Calculate Initial Velocity Using the Acceleration Formula to Calculate Time Motion under Gravity
 use differentiation and integration with respect to time to solve simple problems concerning displacement, velocity and acceleration 	
 use appropriate formulae for motion with constant acceleration in a straight line. 	

4.3 Momentum

Candidates should be able to:	Lessons
 use the definition of linear momentum and show understanding of its vector nature 	 <u>Momentum</u> <u>Conservation of Momentum</u>
• use conservation of linear momentum to solve problems that may be modelled as the direct impact of two bodies.	

4.4 Newton's laws of motion

Candidates should be able to:	Lessons
• apply Newton's laws of motion to the linear motion of a particle of constant mass moving under the action of constant forces, which may include friction, tension in an inextensible string and thrust in a connecting rod	• <u>Newton's First Law</u>
• use the relationship between mass and weight	
• solve simple problems which may be modelled as the motion of a particle moving vertically or on an inclined plane with constant acceleration	
• solve simple problems which may be modelled as the motion of connected particles.	

4.5 Energy, work and power

Candidates should be able to:	Lessons
• understand the concept of the work done by a force, and calculate the work done by a constant force when its point of application undergoes a displacement not necessarily parallel to the force	 Work Power Kinetic Energy Gravitational Potential Energy Work Done by Gravitational Fields
 understand the concepts of gravitational potential energy and kinetic energy, and use appropriate formulae 	
• understand and use the relationship between the change in energy of a system and the work done by the external forces, and use in appropriate cases the principle of conservation of energy	
• use the definition of power as the rate at which a force does work, and use the relationship between power, force and velocity for a force acting in the direction of motion	
• solve problems involving, for example, the instantaneous acceleration of a car moving on a hill against a resistance.	

Probability and Statistics 1 (for Paper 5)

5.1 Representations of data

Candidates should be able to:	Lessons
 select a suitable way of presenting raw statistical data, and discuss advantages and/or disadvantages that particular representations may have 	 <u>Types of Data</u> <u>Dot Plots, Stem and Leaf Plots</u> <u>and Histograms</u>
 draw and interpret stem-and-leaf diagrams, box-and-whisker plots, histograms and cumulative frequency graphs 	 <u>Cumulative Frequency</u> <u>Range</u> <u>Median, Quartiles and</u>
 understand and use different measures of central tendency (mean, median, mode) and variation (range, interquartile range, standard deviation) 	Percentiles Interquartile Range Box and Whisker Plots and Interguartile Range
use a cumulative frequency graph	Box and Whisker Plots,
• calculate and use the mean and standard deviation of a set of data (including grouped data) either from the data itself or from given totals Σx and Σx^2 , or coded totals $\Sigma(x-a)$ and $\Sigma(x-a)^2$ and use such totals in solving problems which may involve up to two data sets.	 Histograms and Dot Plots Five Point Summary Back-to-Back Stem and Leaf Plots Calculating Measures of Centre and Spread Measures of Centre in Grouped Data Cumulative Frequency Median, Quartiles and Percentiles Interquartile Range Calculating Standard Deviation

5.2 Permutations and combinations

Candidates should be able to:	Lessons
 understand the terms permutation and combination, and solve simple problems involving selections 	• <u>Combinations and Permutations</u>
 solve problems about arrangements of objects in a line, including those involving repetition (e.g. the number of ways of arranging the letters of the word 'NEEDLESS') restriction (e.g. the number of ways several people can stand in a line if two particular people must, or must not, stand next to each other). 	

5.3 Probability

Candidates should be able to:	Lessons
 evaluate probabilities in simple cases by means of enumeration of equiprobable elementary events, or by calculation using permutations or combinations 	 <u>Probability Concepts</u> <u>Intersections and Unions</u> <u>Expected Value</u>
 use addition and multiplication of probabilities, as appropriate, in simple cases 	 <u>Conditional Probability</u> <u>Further Questions</u> Introducing Vonn Diagrams
 understand the meaning of exclusive and independent events, including determination of whether events A and B are independent by comparing the values of P(A ∩ B) and P(A) x P(B) 	 Introducing Venn Diagrams Using Venn Diagrams Triple Venn Diagrams Venn Diagrams: Further Questions Introducing Two-Way Tables
 calculate and use conditional probabilities in simple cases. 	 <u>Using Two-Way Tables</u> <u>Two-Way Tables: Further</u> <u>Questions</u> <u>Introducing Probability Trees</u> <u>Using Probability Trees</u> <u>Probability Trees: Further</u> <u>Questions</u> <u>Multiplication & Addition Rules</u> <u>Introduction to Independence</u> <u>Investigating Independent Events</u> <u>using Chance Diagrams</u>

5.4 Discrete random variables

Candidates should be able to:	Lessons
 draw up a probability distribution table relating to a given situation involving a discrete random variable X, and calculate E(X) and Var(X) 	 Introduction to Discrete Random Variables Using Variance and Standard
• use formulae for probabilities for the binomial and geometric distributions, and recognise practical situations where these distributions are suitable models	 <u>Deviation of Discrete Random</u> <u>Variables</u> <u>Discrete Random Variables to</u> <u>Solve Practical Problems</u> <u>Calculating the Mean and Variance</u> <u>of a Binomial Distribution</u> <u>Using Binomial Distributions to</u> <u>Model and Solve Practical</u> <u>Problems</u>
 use formulae for the expectation and variance of the binomial distribution and for the expectation of the geometric distribution. 	

5.5 The normal distribution

Candidates should be able to:	Lessons
 understand the use of a normal distribution to model a continuous random variable, and use normal distribution tables 	 Introducing the Normal Distribution The Standard Normal Distribution
 solve problems concerning a variable X, where X~N(μσ²)i, including finding the value of P (X > x₁), or a related probability, given the values of x₁, μ,σ. finding a relationship between x₁, μ,σ given the value of P (X > x₁) or a related probability 	 <u>Calculating Probabilities with the</u> <u>Normal Distribution</u> <u>Applications of the Normal</u> <u>Distribution</u> <u>Applications of the Normal</u> <u>Distribution</u> Working Backwards: Calculating
• recall conditions under which the normal distribution can be used as an approximation to the binomial distribution, and use this approximation, with a continuity correction, in solving problems.	 Bounds Working Backwards: Mean and Standard Deviation The Normal Distribution: Further Questions

Probability and Statistics 2 (for Paper 6)

6.1 The Poisson distribution

Candidates should be able to:	Lessons
- use formulae to calculate probabilities for the distribution $\text{Po}\lambda$	 Introducing the Poisson <u>Distribution</u> Poisson Distribution: Combined <u>Events</u>
• use the fact that if X \sim Po λ then the mean and variance of X are each equal to λ	
 understand the relevance of the Poisson distribution to the distribution of random events, and use the Poisson distribution as a model 	
• use the Poisson distribution as an approximation to the binomial distribution where appropriate	
• use the normal distribution, with continuity correction, as an approximation to the Poisson distribution where appropriate.	

6.2 Linear combinations of random variables

Candidates should be able to:	Lessons
 use, when solving problems, the results that E(aX + b) = aE(X) + b and Var(aX + b) = a²Var(X) E(aX + bY) = aE(X) + bE(Y) - Var(aX + bY) = a²Var(X) + b²Var(Y) for independent X and Y if X has a normal distribution then so does aX + b if X and Y have independent normal distributions then aX + bY has a normal distribution if X and Y have independent Poisson distributions then X + Y has a Poisson distribution. 	Not currently covered in the EP platform

6.3 Continuous random variables

Candidates should be able to:	Lessons
• understand the concept of a continuous random variable, and recall and use properties of a probability density function	 Continuous Random Variables General Continuous Random Variables Expected Value, Standard Deviation and Variance of Continuous Random Variables
• use a probability density function to solve problems involving probabilities, and to calculate the mean and variance of a distribution.	

6.4 Sampling and estimation

Candidates should be able to:	Lessons
 understand the distinction between a sample and a population, and appreciate the necessity for randomness in choosing samples 	 What is Sampling? Types of Sampling: Probability Sampling Sampling Errors Analysing Sampling in Reports Introduction to Random Sampling and Bias Sample proportions, means and standard deviation Question Bank - Topic 5: Interval Estimates for Proportions
• explain in simple terms why a given sampling method may be unsatisfactory	
 recognise that a sample mean can be regarded as a random variable, and use the facts that E_X i = n and that X n Var 2 	
 use the fact that _X i has a normal distribution if X has a normal distribution 	
 use the Central Limit Theorem where appropriate 	
• calculate unbiased estimates of the population mean and variance from a sample, using either raw or summarised data	
• determine and interpret a confidence interval for a population mean in cases where the population is normally distributed with known variance or where a large sample is used	
• determine, from a large sample, an approximate confidence interval for a population proportion.	

6.5 Hypothesis tests

Candidates should be able to:	Lessons
• understand the nature of a hypothesis test, the difference between one-tailed and two-tailed tests, and the terms null hypothesis, alternative hypothesis, significance level, rejection region (or critical region), acceptance region and test statistic	Not currently covered in the EP platform
 formulate hypotheses and carry out a hypothesis test in the context of a single observation from a population which has a binomial or Poisson distribution, using direct evaluation of probabilities a normal approximation to the binomial or the Poisson distribution, where appropriate 	
• formulate hypotheses and carry out a hypothesis test concerning the population mean in cases where the population is normally distributed with known variance or where a large sample is used	
• understand the terms Type I error and Type II error in relation to hypothesis tests	
• calculate the probabilities of making Type I and Type II errors in specific situations involving tests based on a normal distribution or direct evaluation of binomial or Poisson probabilities.	