WACE Mathematics Methods ATAR Course

EP Curriculum Map

Please note that EP does not currently provide all necessary resources to meet the current WACE Mathematics Methods study design. Any specific content that is not currently covered by EP is highlighted in yellow.

Unit 1

Topic 1.1: Counting and probability

Combinations

Specific Expectations	Lessons
1.1.1 understand the notion of a combination as a set of r objects taken from a set of n distinct objects	 <u>Combinations and Permutations</u> <u>Pascal's Triangle and n Choose r</u>
1.1.2 use the notation n r and the formula n r =n!r!n-r! for the number of combinations of r objects taken from a set of n distinct objects	Binomial Expansion
1.1.3 investigate Pascal's triangle and its properties to link n r to the binomial coefficients of the expansion of (x+y)n for small positive integers n	

Language of events and sets and Review of the fundamentals of probability

Specific Expectations	Lessons		
1.1.4 review the concepts and language of outcomes, sample spaces, and events, as sets of outcomes	Probability Terms and <u>Concepts</u>	Probability Terms and ConceptsVenn Diagrams Using Venn Diagrams	
 1.1.5 use set language and notation for events, including: a) A (or A') for the complement of an event A b) A∩B and A∪B for the intersection and union of events A and B respectively c)A∩B∩C and A∪B∪C for the intersection and union of the three events A,B and C respectively d) recognise mutually exclusive events. 	 <u>Terminology</u> <u>Outcomes</u> <u>Likelihood</u> 	 <u>Relative Frequencies</u> <u>Using Relative Frequencies</u> <u>Multiplication & Addition</u> <u>Rules</u> 	
1.1.6 use everyday occurrences to illustrate set descriptions and representations of events and set operations			
1.1.7 review probability as a measure of 'the likelihood of occurrence' of an event			
1.1.8 review the probability scale: $0 \le P(A) \le 1$ for each event A, with PA=0 if A is an impossibility and PA=1 if A is a certainty			
1.1.9 review the rules: PA=1-P(A) and PAB=PA+PB-PAB			
1.1.10 use relative frequencies obtained from data as estimates of probabilities			

Conditional probability and independence

Specific Expectations	Lessons
1.1.11 understand the notion of a conditional probability and recognise and use language that indicates conditionality	 Introduction to Conditional Probability Investigating Conditional Probability with Venn Diagrams
1.1.12 use the notation PB and the formula PAB=PBPB	Investigating Conditional Probability with Two-Way Tables
1.13 understand the notion of independence of an event A from an event B, as defined by 3=PA	<u>Calculating Conditional Probability Using Tree Diagrams</u> <u>Calculating Conditional Probabilities using Arrays</u> Ward Problems
1.1.14 establish and use the formula PA∩B=PAP(B) for independent events A and B, and recognise the symmetry of independence	 Introduction to Independence Investigating Independent Events using Chance Diagrams
1.1.15 use relative frequencies obtained from data as estimates of conditional probabilities and as indications of possible independence of events	 <u>Relative Frequencies, and Conditional Probability and</u> <u>Independent Probability</u> Question Bank: Counting and Probability Question Bank: Counting and Probability

Topic 1.2: Functions and graphs

Lines and linear relationships

Specific Expectations	Lessons
1.2.1 recognise features of the graph of y=mx+c, including its linear nature, its intercepts and its slope or gradient	 <u>Plotting Linear Equations</u> <u>Using Tables</u> <u>Praying the Line from an</u>
1.2.2 determine the equation of a straight line given sufficient information; including parallel and perpendicular lines	 Drawing the Line from an Equation Slope and Intercept from a Graph Equations From Graphs How to Model Situations Modelling Situations: Gym Membership Modelling Situations: The Leaky Bike Tyre Modelling Situations: The Road Trip Solving Linear Equations with Fractions Solving Linear Equations Using Graphs to Solve Simultaneous Equations Using Elimination to Solve Simultaneous Equations Using Substitution to Solve Simultaneous Equations Modelling Situations: The Road Trip

Quadratic relationships

Specific Expectations	Lessons
1.2.3 examine examples of quadratically related variables	Parabolas
1.2.4 recognise features of the graphs of y=x2, y=a(x-b)2+c, and y=ax-bx-c, including their parabolic nature, turning points, axes of symmetry and intercepts	 Parabola Transformations Multiple Transformations of Parabolas
1.2.5 solve quadratic equations, including the use of quadratic formula and completing the square	<u>Monic Factorisation</u> <u>Non-Monic Factorisation</u> Solving Monic Quadratic Equations
1.2.6 determine the equation of a quadratic given sufficient information	Solving Non-Monic Quadratic Equations
1.2.7 determine turning points and zeros of quadratics and understand the role of the discriminant	<u>The Quadratic Formula</u>
1.2.8 recognise features of the graph of the general quadratic y=ax2+bx+c	

Inverse proportion

Specific Expectations	Lessons
1.2.9 examine examples of inverse proportion	Inverse Proportion
1.2.10 recognise features and determine equations of the graphs of y=1x and y=ax-b,	<u>Hyperbola Graphs</u>
including their hyperbolic shapes and their asymptotes.	<u>Hyperbola Graph Transformations</u>
	 Inverse Functions and Transformations
	<u>Applications of Quadratic Equations</u>

Powers and polynomials

Specific Expectations	Lessons
1.2.11 recognise features of the graphs of y=xn for nN, n=-1 and n=½, including shape, and behaviour as $x \rightarrow \infty$ and $x \rightarrow -\infty$	 Introduction to Polynomials Operating with Polynomials
1.2.12 identify the coefficients and the degree of a polynomial	Evaluating Polynomials
1.2.13 expand quadratic and cubic polynomials from factors	 Expanding Quadratic and Cubic Expressions Factorising Cubic Polynomials
1.2.14 recognise features and determine equations of the graphs of y=x3, y=a(x-b)3+c and y=kx-ax-bx-c, including shape, intercepts and behaviour as $x \rightarrow \infty$ and $x \rightarrow -\infty$	 <u>The Factor Theorem</u> Solving Polynomials
1.2.15 factorise cubic polynomials in cases where all roots are given or easily obtained from the graph	 Solving Equations involving Cubic and Quartic Polynomials Expanding Cubic Expressions
1.2.16 solve cubic equations using technology, and algebraically in cases where all roots are given or easily obtained from the graph	 Features of Polynomial Graphs Features of Graphs - Roots Cubics Cubic Transformations Cubic Transformations

Graphs of relations

Specific Expectations	Lessons
1.2.17 recognise features and determine equations of the graphs of x2+y2=r2 and x-a2+y-b2=r2, including their circular shapes, their centres and their radii	 <u>Circle Graphs</u> <u>The Graph of y^2=x</u>
1.2.18 recognise features of the graph of y2=x, including its parabolic shape and its axis of symmetry	Question Bank: Functions and GraphsQuestion Bank: Functions and Graphs

Functions

Specific Expectations	Lessons
1.2.19 understand the concept of a function as a mapping between sets and as a rule or a formula that defines one variable quantity in terms of another	 Introduction to Functions Function Notation
1.2.20 use function notation; determine domain and range; recognise independent and dependent variables	 <u>Transformations of Functions</u> <u>Find the Range of a Function</u>
1.2.21 understand the concept of the graph of a function	
1.2.22 examine translations and the graphs of y=fx+a and y=f(x-b)	
1.2.23 examine dilations and the graphs of y=cfx and y=fdx	
1.2.24 recognise the distinction between functions and relations and apply the vertical line test	

Topic 1.3: Trigonometric functions

Cosine and sine rules

Specific Expectations	Lessons	
 1.3.1 review sine, cosine and tangent as ratios of side lengths in right-angled triangles 1.3.2 understand the unit circle definition of cos θ, sin and tan and periodicity using degrees 1.3.3 examine the relationship between the angle of inclination of a line and the gradient of that line 1.3.4 establish and use the cosine and sine rules, including consideration of the ambiguous case and the formula Area= 12bc sin A for the area of a triangle 	 Trigonometric Ratios The Sine Rule Finding Angles Using the Sine Rule The Sine Rule: The Ambiguous Case The Cosine Rule Finding Angles Using the Cosine Rule Area of a Triangle: ½ bc sin A 	 Using Trigonometric Rules to Model and Solve Problems Review Lesson: Trigonometric Rules Review Lesson: Trigonometric Rules Extension: Heron's Formula Special Triangles: 30-60-90 Special Triangles: 45-45-90 Trigonometric Ratios and Complementary Angles Question Bank: Triangle Formulae Question Bank: Triangle Formulae

Circular measure and radian measure

Specific Expectations	Lessons
1.3.5 define and use radian measure and understand its relationship with degree measure	Introduction to Radians
1.3.6 use radian measure to calculate lengths of arcs and areas of sectors and segments in	The Unit Circle and Radians
a circle	Finding an Arc Length
	Area of Sectors and Segments

Trigonometric functions

Specific Expectations	Lessons	
1.3.7 understand the unit circle definition of sin $\theta,$ and and periodicity using radians	Understanding and	Using Trigonometric
1.3.8 recognise the exact values of sin $\boldsymbol{\theta},$ and at integer multiples of 6 and 4	Graphing Sine	Functions to Solve Practical
1.3.9 recognise the graphs of y=sin x, y=cos x , and y=tan x on extended domains	Understanding and Problems Graphing Cosine Forestry Subdivision	Forestry Subdivision
1.3.10 examine amplitude changes and the graphs of y=asin x and y=acos x	 Understanding and 	 Balloons Over Waikato The Pythagorean Identity Solving equations involving trigonometric functions Question Bank: Trigonometric Functions 1 Question Bank: Trigonometric Functions 1
1.3.11 examine period changes and the graphs of y=sin bx, y=cos bx and y=bx	Graphing Tangent	
1.3.12 examine phase changes and the graphs of y=sin (x-c), y=cos (x-c) and y=(x-c)	<u>Comparing Trigonometric</u> Functions	
1.3.13 examine the relationships sin x+2=cos x and cos x-2=sin x	 Investigating the Effect of Parameters on Trigonometric Graphs Sketching Transformed Trigon an atria Country 	
1.3.14 prove and apply the angle sum and difference identities		
1.3.15 identify contexts suitable for modelling by trigonometric functions and use them to solve practical problems		
1.3.16 solve equations involving trigonometric functions using technology, and algebraically in simple cases	Irigonometric Graphs	

Unit 2

Topic 2.1: Exponential functions

Indices and the index laws

Specific Expectations	Lessons
2.1.1 review indices (including fractional and negative indices) and the index laws	Ordering Numbers and Introduction to Surds
2.1.2 use radicals and convert to and from fractional indices	Estimating Calculations in Index Laws and Fractional
2.1.3 understand and use scientific notation and significant figures	Scientific Notation (Standard Form) Introduction to Scientific Notation (Standard Powers Introduction to Scientific Notation (Standard Form)
	Adding and Subtracting with Scientific Notation (Standard Form) Introduction to Scientific
	Multiplying and Dividing in Scientific Notation (Standard Small Numbers
	Form)Definitions List: Scientific• Significant Figures andNotation
	 Scientific Notation (Standard Question Bank: Exponential Functions 1 Question Bank: Exponential Functions 1

Exponential functions

Specific Expectations	Lessons
2.1.4 establish and use the algebraic properties of exponential functions	Question Bank: Exponential Functions 2
2.1.5 recognise the qualitative features of the graph of y=ax (a>0), including asymptotes, and of its translations (y=ax+b and y=ax-c)	 Question Bank: Exponential Functions 2 <u>Solving Exponential Equations</u>
2.1.6 identify contexts suitable for modelling by exponential functions and use them to solve practical problems	 Exponential Graphs Features of Exponential Graphs Using Exponential Europtions to Solve Practical Problems
2.1.7 solve equations involving exponential functions using technology, and algebraically in simple cases	

Topic 2.2: Arithmetic and geometric sequences and series

Arithmetic sequences

Specific Expectations	Lessons		
2.2.1 recognise and use the recursive definition of an arithmetic sequence: tn+1=tn+d	Introduction to Arithmetic	<u>Sigma Notation</u>	
2.2.2 develop and use the formula tn=t1+n-1d for the general term of an arithmetic sequence and recognise its linear nature	Sequences Recursive Arithmetic	Sequences•• Recursive Arithmetic•	 <u>The Arithmetic Sum Rule</u> <u>Arithmetic Sums: Solving for</u>
2.2.3 use arithmetic sequences in contexts involving discrete linear growth or decay, such as simple interest	Sequences Finding an Arithmetic Term Einding a Term Number for	<u>Difference</u>	
2.2.4 establish and use the formula for the sum of the first n terms of an arithmetic sequence	 Finding a Term Number for an Arithmetic Sequence Sequences and Series Using Technology Using Arithmetic Sequences to Model and Analyse Practical Situations 	 Partial Sums of Arithmetic Sequences Solving for an Arithmetic Term Number Review: Arithmetic Sequences Review: Arithmetic Sequences 	

Geometric sequences

Specific Expectations	Lessons	
2.2.5 recognise and use the recursive definition of a geometric sequence: tn+1=tnr	<u>Geometric Sequences</u>	<u>Mixed Sequences and</u>
2.2.6 develop and use the formula tn=t1rn-1 for the general term of a geometric sequence and recognise its exponential nature	<u>Recursive Geometric</u> <u>Sequences</u>	<u>Series: Finding a Sum of</u> <u>Values</u>
2.2.7 understand the limiting behaviour as $n\to\infty$ of the terms tn in a geometric sequence and its dependence on the value of the common ratio r	Summing Geometric Sequences Logs of Geometric	Using Sequences and Series in Context Alice's New Car
2.2.8 establish and use the formula Sn=t1rn-1r-1 for the sum of the first n terms of a geometric sequence	Sums to Infinity	 <u>Hamilton's Frogs</u> Problem Solving: Cold Case
2.2.9 use geometric sequences in contexts involving geometric growth or decay, such as compound interest	 Using Geometric Sequences to Model and Analyse Practical Problems Review: Geometric Sequences Mixed Sequences Mixed Sequences and 	 Student Accommodation Fibonacci Sequence Graphing Sequences Question Bank: Arithmetic and Geometric Sequences and Series 2 Question Bank: Arithmetic
	 Series: Finding the Value of a Term Mixed Sequences and Series: Finding a Term Number 	and Geometric Sequences and Series 2

Topic 2.3: Introduction to differential calculus

Rates of change

Specific Expectations	Lessons	
2.3.1 interpret the difference quotient fx+h-f(x)h as the average rate of change of a function f	 <u>Rates of Change</u> <u>Applications of Rates of Cha</u> 	nge
2.3.2 use the Leibniz notation δx and δy for changes or increments in the variables x and y		
2.3.3 use the notation $\delta y \delta x$ for the difference quotient fx+h-f(x)h where y=fx		
2.3.4 interpret the ratios fx+h-f(x)h and $\delta y \delta x$ as the slope or gradient of a chord or secant of the graph of y=fx		

The concept of the derivative

Specific Expectations	Lessons	
2.3.5 examine the behaviour of the difference quotient fx+h-f(x)h as h \rightarrow 0 as an informal introduction to the concept of a limit	 Introduction to Derivatives Sketching the Gradient 	 Features of Graphs Gradient at a Point
2.3.6 define the derivative f'x as fx+h-f(x)h	Function from the Original	• Finding a Point at a
2.3.7 use the Leibniz notation for the derivative: dydx= $\delta y \delta x$ and the correspondence dydx=f'x where y=f(x)	Eunction Differentiation By First Bringinles	Gradient Finding Multiple Solutions for a Gradient
2.3.8 interpret the derivative as the instantaneous rate of change	<u>Review: Introduction to</u>	
2.3.9 interpret the derivative as the slope or gradient of a tangent line of the graph of $y=f(x)$	<u>Derivatives</u><u>Features of Graphs</u>	

Computation and Properties of Derivatives

Specific Expectations	Lessons	
2.3.10 estimate numerically the value of a derivative for simple power functions	<u>Establishing the Formula for Differentiating Polynomials</u>	
2.3.11 examine examples of variable rates of change of non-linear functions	Differentiation of Polynomials Differentiating Polynomials	
2.3.12 establish the formula ddxxn=nxn-1 for non-negative integers n expanding (x+h)n or by factorising (x+h)n-xn	<u>Differentiating Polynomials</u> <u>Rearranging Expressions to Index Form</u> <u>Rearranging into Index Form with Negative and Non-Integer</u>	
2.3.13 understand the concept of the derivative as a function	Powers	
2.3.14 identify and use linearity properties of the derivative	Differentiating Negative Powers	
2.3.15 calculate derivatives of polynomials	 <u>Differentiating Non-Integer Powers</u> <u>Review Lesson: Differentiating Polynomials</u> 	

Applications of derivatives

Specific Expectations	Lessons	
2.3.16 determine instantaneous rates of change	 Rectilinear Motion Distance, Velocity and 	Increasing and Decreasing Functions
 2.3.17 determine the slope of a tangent and the equation of the tangent 2.3.18 construct and interpret position-time graphs with velocity as the slope of the tangent 	<u>Acceleration</u> <u>Kinematics</u>	 <u>Sketching Graphs</u> <u>Review Lesson: Stationary</u>
2.3.19 recognise velocity as the first derivative of displacement with respect to time	Graphing and Derivatives	 <u>Points</u> <u>Questions on Differentiation</u>
2.3.20 sketch curves associated with simple polynomials, determine stationary points, and local and global maxima and minima, and examine behaviour as $x \rightarrow \infty$ and $x \rightarrow -\infty$	 Plotting and Reading Travel Graphs Analysing Travel Graphs Finding a Tangent to a Curve Finding a Normal to a Curve Review Lesson: Tangents and Normals Finding Stationary Points Classifying Stationary Points by Reading Graphs 	Rules
2.3.21 solve optimisation problems arising in a variety of contexts involving polynomials on finite interval domains		 Applications of Derivatives <u>Optimisation</u> <u>Differentiating Polynomials:</u> <u>River Float</u> <u>Practice Assessment -</u> <u>Bridge Construction</u> <u>Rates of Change: Zeppelins</u>

Anti-derivatives

Specific Expectations	Lessons
2.3.22 calculate anti-derivatives of polynomial functions	 <u>Sketching the Original Function</u> <u>Anti-Differentiating Polynomials</u> <u>Equation of the Original Function</u>
	 Question Bank: Introduction to Differential Calculus Question Bank: Introduction to Differential Calculus

Unit 3

Topic 3.1: Further differentiation and applications

Exponential functions

Specific Expectations	Lessons
3.1.1 estimate the limit of ah-1h as h $ ightarrow$ 0, using technology, for various values of a >0	Defining the Exponential Function
3.1.2 identify that e is the unique number a for which the above limit is 1	Differentiating Exponential Functions
3.1.3 establish and use the formula ddxex=ex	 Modelling with Derivatives of Exponential Functions
3.1.4 use exponential functions of the form Aekx and their derivatives to solve practical problems	

Trigonometric functions

Specific Expectations	Lessons
3.1.5 establish the formulas ddxsin x =cos x and ddxcos x =-sin x by graphical treatment, numerical estimations of the limits, and informal proofs based on geometric constructions	 <u>Questions on Trigonometric Functions</u> <u>Establishing the Derivatives of Sine and Cosine</u>
3.1.6 use trigonometric functions and their derivatives to solve practical problems	 <u>Differentiation of the Sine and Cosine Functions</u> <u>Applications of Derivatives of Trigonometric Functions</u>

Differentiation rules

Specific Expectations	Lessons	
3.1.7 examine and use the product and quotient rules	<u>The Product Rule</u>	<u>Combining Multiple Rules</u>
3.1.8 examine the notion of composition of functions and use the chain rule for determining the derivatives of composite functions	 <u>The Quotient Rule</u> <u>The Chain Rule</u> 	<u>Mixed Differentiation</u> <u>Techniques</u>
3.1.9 apply the product, quotient and chain rule to differentiate functions such as xex, tan x, 1xn , xsin x, ex sin x and fax-b		Applying Differentiation <u>Rules</u>

The second derivative and applications of differentiation

Specific Expectations	Lessons	
3.1.10 use the increments formula: δy≈dydx×δx to estimate the change in the dependent variable y resulting from changes in the independent variable x	Understanding The Second E The Second Derivative	<u>Derivative</u>
3.1.11 apply the concept of the second derivative as the rate of change of the first derivative function	 <u>Questions - The 2nd derivative</u> <u>Using the Second Derivative</u> 	ve and applications to Find Local Maxima and Minima
3.1.12 identify acceleration as the second derivative of position with respect to time	 <u>Sketching the Graph of a Fur</u> Solving Optimisation Problem 	nction Using Derivatives
3.1.13 examine the concepts of concavity and points of inflection and their relationship with the second derivative	 Solving Optimisation Problem Solving Optimisation Problem Question Bank - Further Diffe 	ns by Developing a Function erentiation and Applications 3
3.1.14 apply the second derivative test for determining local maxima and minima	• Question Bank - Topic 3.1: Fu	rther Differentiation and
3.1.15 sketch the graph of a function using first and second derivatives to locate stationary points and points of inflection	 Applications Question Bank: Further Differentiation and Applicat 	
3.1.16 solve optimisation problems from a wide variety of fields using first and second derivatives		

Topic 3.2: Integrals

Anti-differentiation

Specific Expectations	Lessons	
3.2.1 identify anti-differentiation as the reverse of differentiation	Integrating Polynomials	Integrating Quotients:
3.2.2 use the notation fxdx for anti-derivatives or indefinite integrals	Integrating Rational	Factorising and Cancelling
3.2.3 establish and use the formula xndx=1n+1xn+1+c for n≠-1	Einding the Constant of	Integrating Sums & Transformations of
3.2.4 establish and use the formula exdx=ex+c	Integration	Functions
3.2.5 establish and use the formulas sin x dx=x +c and cos x dx=sin x +c	Integrating Exponentials	Determining the Original
3.2.6 identify and use linearity of anti-differentiation	Integrating Trigonometric	Function given the
3.2.7 determine indefinite integrals of the form fax-bdx	 Trigonometric Functions: 	Condition
3.2.8 identify families of curves with the same derivative function	Finding the Constant	Determining Integrals by
3.2.9 determine fx, given f'x and an initial condition fa=b	Integrating Products:	Recognition
	Integrating Quotients:	Extension: Integration by Substitution Extension: Identifying
	Splitting Fractions	Substitutions
		<u>Further Anti-Differentiation</u>
		<u>of Polynomials</u>

Definite integrals and Fundamental theorem

Specific Expectations	Lessons
3.2.10 examine the area problem and use sums of the form ifxi δxi to estimate the area under the curve y=f(x)	 Introduction to Definite Integrals Calculating Definite Integrals
3.2.11 identify the definite integral abfxdx as a limit of sums of the form ifxi δxi	Definite Integrals: Further Questions
3.2.12 interpret the definite integral abfxdx as area under the curve y=fx if fx>0	 <u>Anti-differentiation</u> <u>Anti-differentiation</u> - Area between curves
3.2.13 interpret abfxdx as a sum of signed areas	And differentiation Area between ourves
3.2.14 apply the additivity and linearity of definite integrals	
3.2.15 examine the concept of the signed area function Fx=axftdt	
3.2.16 apply the theorem: F'x=ddxaxftdt=fx, and illustrate its proof geometrically	
3.2.17 develop the formula abf'xdx=fb-f(a) and use it to calculate definite integrals	

Applications of integration

Specific Expectations	Lessons	
3.2.18 calculate total change by integrating instantaneous or marginal rate of change3.2.19 calculate the area under a curve	 <u>Kinematics</u> <u>Displacements and</u> 	 Area Under a Curve Area Above and Below the
3.2.20 calculate the area between curves determined by functions of the form y=f(x)3.2.21 determine displacement given velocity in linear motion problems	Acceleration and Initial Values	 <u>Area Between Two Curves</u> <u>Calculating the Area</u>
3.2.22 determine positions given linear acceleration and initial values of position and velocity.	 Determining Displacement From Velocity Rates of Change Calculating Total Change Approximating the Area Under Curves The Rectangle Rule The Trapezium Rule Simpson's Rule Finding the Range of Integration 	 Between Two Curves Calculating the Area Under a Curve Area Beneath a Curve: Further Questions Question Bank: Integrals Topic 3.2: Integrals Question Bank: Integrals

Topic 3.3: Discrete random variables

General discrete random variables

Specific Expectations	Lessons
3.3.1 develop the concepts of a discrete random variable and its associated probability function, and their use in modelling data	 Introduction to Discrete Random Variables Relative Frequency with Discrete Random Variables
3.3.2 use relative frequencies obtained from data to obtain point estimates of probabilities associated with a discrete random variable	 <u>Uniform Discrete Random Variables</u> <u>Examining Non-uniform Discrete Random Variables</u>
3.3.3 identify uniform discrete random variables and use them to model random phenomena with equally likely outcomes	 Expected Number Using Variance and Standard Deviation of Discrete Random
3.3.4 examine simple examples of non-uniform discrete random variables	 Discrete Random Variables to Solve Practical Problems
3.3.5 identify the mean or expected value of a discrete random variable as a measurement of centre, and evaluate it in simple cases	 Question Bank: Discrete Random Variables 1 Question Bank: Discrete Random Variables 1
3.3.6 identify the variance and standard deviation of a discrete random variable as measures of spread, and evaluate them using technology	
3.3.7 examine the effects of linear changes of scale and origin on the mean and the standard deviation	
3.3.8 use discrete random variables and associated probabilities to solve practical problems	

Bernoulli distributions and binomial distributions

Specific Expectations	Lessons
3.3.9 use a Bernoulli random variable as a model for two-outcome situations	Bernoulli Distributions
3.3.10 identify contexts suitable for modelling by Bernoulli random variables	Binomial Distribution Coloulating the Mean and Variance of a Rinemial Distribution
3.3.11 determine the mean p and variance p1-pof the Bernoulli distribution with parameter p	 <u>Using Binomial Distributions to Model and Solve Practical</u> Problems
3.3.12 use Bernoulli random variables and associated probabilities to model data and solve practical problems	 Question Bank - Bernoulli Distributions Question Bank - Binomial Distributions
3.3.13 examine the concept of Bernoulli trials and the concept of a binomial random variable as the number of 'successes' in n independent Bernoulli trials, with the same probability of success p in each trial	 Question Bank -Topic 3.3: Discrete Random Variables Question Bank: Discrete Random Variables 2 Question Bank: Discrete Random Variables 2
3.3.14 identify contexts suitable for modelling by binomial random variables	
3.3.15 determine and use the probabilities PX=x=n x px1-pn-x associated with the binomial distribution with parameters n and p; note the mean np and variance np1-p of a binomial distribution	
3.3.16 use binomial distributions and associated probabilities to solve practical problems	

Unit 4

Topic 4.1: The logarithmic function

Logarithmic functions

Specific Expectations	Lessons	
4.1.1 define logarithms as indices: ax=b is equivalent to x=b i.e. ab =b	Introduction to Logarithms	Solving Exponential
4.1.2 establish and use the algebraic properties of logarithms	Solving Simple Logarithmic	Equations Using Logarithms
4.1.3 examine the inverse relationship between logarithms and exponentials: y=ax is equivalent to x=y	Equations Deriving the Laws of Logarithms	Solving Equations Involving Logarithmic Functions Applications of Exponential
4.1.4 interpret and use logarithmic scales	<u>The Logarithm Laws</u>	Equations
4.1.5 solve equations involving indices using logarithms	<u>Combining the Logarithm</u>	• Exponentials and
4.1.6 identify the qualitative features of the graph of $y=x$ (a>1), including asymptotes, and of its translations $y=x +b$ and $(x-c)$	 <u>Laws</u> <u>Deriving the Laws of</u> 	Logarithms: Multiple Variables
4.1.7 solve simple equations involving logarithmic functions algebraically and graphically	Establish and Use	Logarithmic Scales Interpreting and Using
4.1.8 identify contexts suitable for modelling by logarithmic functions and use them to solve practical problems	 Establish and Ose Logarithmic Laws and Definitions Solving Using the Logarithm Laws Combining the Logarithm Laws 	 Interpreting and Using Logarithmic Scales Features of Logarithmic Graphs Question Bank: The Logarithmic Function 1 Question Bank: The Logarithmic Function 1 Question Bank: The Logarithmic Function 2 Question Bank: The Logarithmic Function 2

Calculus of the natural logarithmic function

Specific Expectations	Lessons
4.1.9 define the natural logarithm ln x =x	Differentiating Exponential Functions with Different Bases
4.1.10 examine and use the inverse relationship of the functions y=ex and y=ln x	<u>The Natural Logarithm and Inverse Relations</u>
4.1.11 establish and use the formula ddxln x =1x	 <u>Differentiating the Natural Logarithm</u> Using Logarithmic Functions and Their Derivatives to Solve
4.1.12 establish and use the formula $1xdx=ln x + c$, for $x>0$	Problems
4.1.13 determine derivatives of the form ddxln f(x) and integrals of the form f'xfxdx, for f (x)>0	 <u>Problem Solving with Derivatives of Natural Logarithms</u> <u>Deriving Logarithms of Base a</u>
4.1.14 use logarithmic functions and their derivatives to solve practical problems	Question Bank - Topic 4.1: The Logarithmic Function

Topic 4.2: Continuous random variables and the normal distribution

General continuous random variables

Specific Expectations	Lessons
4.2.1 use relative frequencies and histograms obtained from data to estimate probabilities associated with a continuous random variable	 <u>Continuous Random Variables</u> <u>Calculating the Expected Value, Standard Deviation and</u>
4.2.2 examine the concepts of a probability density function, cumulative distribution function, and probabilities associated with a continuous random variable given by integrals; examine simple types of continuous random variables and use them in appropriate contexts	 <u>Variance of Continuous Random Variables</u> <u>Questions on General Continuous Random Variables</u>
4.2.3 identify the expected value, variance and standard deviation of a continuous random variable and evaluate them using technology	
4.2.4 examine the effects of linear changes of scale and origin on the mean and the standard deviation	

Normal distributions

Specific Expectations	Lessons	
4.2.5 identify contexts, such as naturally occurring variation, that are suitable for modelling by normal random variables	• <u>Topic 4.2: Continuous</u> <u>Random Variables and the</u>	Working Backwards: <u>Calculating Bounds</u>
4.2.6 identify features of the graph of the probability density function of the normal distribution with mean μ and standard deviation σ and the use of the standard normal distribution	 <u>Normal Distribution</u> <u>Normal Random Variables</u> <u>Introducing the Normal</u> 	 Working Backwards: Mean and Standard Deviation The Normal Distribution:
4.2.7 calculate probabilities and quantiles associated with a given normal distribution using technology, and use these to solve practical problems	 Distribution The Standard Normal Distribution Calculating Probabilities with the Normal Distribution Using Normal Distributions to Model and Solve Practical Problems Applications of the Normal Distribution 	 Further Questions Question Bank: Continuous Random Variables and The Normal Distribution Question Bank: Continuous Random Variables and The Normal Distribution Questions - General Continuous Random Variables

Topic 4.3: Interval estimates for proportions

Random sampling

Specific Expectations	Lessons
4.3.1 examine the concept of a random sample	<u>Types of Sampling: Probability Sampling</u>
4.3.2 discuss sources of bias in samples, and procedures to ensure randomness	<u>Types of Sampling: Non-Probability Sampling</u> Sampling Frages
4.3.3 use graphical displays of simulated data to investigate the variability of random samples from various types of distributions, including uniform, normal and Bernoulli	 Sampling Errors Analysing Sampling in Reports Misleading Reports Questions - Random Sampling

Sample proportions

Specific Expectations	Lessons
4.3.4 examine the concept of the sample proportion p as a random variable whose value varies between samples, and the formulas for the mean p and standard deviation p1-pn of the sample proportion p	 Introduction to Random Sampling and Bias Investigating the Variability of Random Samples Sample proportions, means and standard deviation
4.3.5 examine the approximate normality of the distribution of p for large samples	<u>Approximating and Simulating the Distribution of Sample</u>
4.3.6 simulate repeated random sampling, for a variety of values of p and a range of sample sizes, to illustrate the distribution of p and the approximate standard normality of p –pp1-pn where the closeness of the approximation depends on both n and p	<u>Proportions</u>

Confidence intervals for proportions

Specific Expectations	Lessons
4.3.7 examine the concept of an interval estimate for a parameter associated with a random variable	 Question Bank: Interval Estimates for Proportions Question Bank: Interval Estimates for Proportions Interval Estimates & Confidence Intervals Approximating and Simulating Margins of Error and Levels of Confidence Questions - Confidence Intervals Topic 4.3: Interval Estimates for Proportions
4.3.8 use the approximate confidence interval p-zp1-pn, p+zp1-pn as an interval estimate for p, where z is the appropriate quantile for the standard normal distribution	
4.3.9 define the approximate margin of error E=zp1-pn and understand the trade-off between margin of error and level of confidence	
4.3.10 use simulation to illustrate variations in confidence intervals between samples and to show that most, but not all, confidence intervals contain p	